3.6.93 \(\int \frac {\cos ^3(c+d x) (1-\cos ^2(c+d x))}{a+b \cos (c+d x)} \, dx\) [593]

3.6.93.1 Optimal result
3.6.93.2 Mathematica [A] (verified)
3.6.93.3 Rubi [A] (verified)
3.6.93.4 Maple [A] (verified)
3.6.93.5 Fricas [A] (verification not implemented)
3.6.93.6 Sympy [F(-1)]
3.6.93.7 Maxima [F(-2)]
3.6.93.8 Giac [B] (verification not implemented)
3.6.93.9 Mupad [B] (verification not implemented)

3.6.93.1 Optimal result

Integrand size = 33, antiderivative size = 193 \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=-\frac {\left (8 a^4-4 a^2 b^2-b^4\right ) x}{8 b^5}+\frac {2 a^3 \sqrt {a-b} \sqrt {a+b} \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^5 d}+\frac {a \left (3 a^2-b^2\right ) \sin (c+d x)}{3 b^4 d}-\frac {\left (4 a^2-b^2\right ) \cos (c+d x) \sin (c+d x)}{8 b^3 d}+\frac {a \cos ^2(c+d x) \sin (c+d x)}{3 b^2 d}-\frac {\cos ^3(c+d x) \sin (c+d x)}{4 b d} \]

output
-1/8*(8*a^4-4*a^2*b^2-b^4)*x/b^5+1/3*a*(3*a^2-b^2)*sin(d*x+c)/b^4/d-1/8*(4 
*a^2-b^2)*cos(d*x+c)*sin(d*x+c)/b^3/d+1/3*a*cos(d*x+c)^2*sin(d*x+c)/b^2/d- 
1/4*cos(d*x+c)^3*sin(d*x+c)/b/d+2*a^3*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c 
)/(a+b)^(1/2))*(a-b)^(1/2)*(a+b)^(1/2)/b^5/d
 
3.6.93.2 Mathematica [A] (verified)

Time = 1.27 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.87 \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\frac {-96 a^4 c+48 a^2 b^2 c+12 b^4 c-96 a^4 d x+48 a^2 b^2 d x+12 b^4 d x+192 a^3 \sqrt {-a^2+b^2} \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )+24 a b \left (4 a^2-b^2\right ) \sin (c+d x)-24 a^2 b^2 \sin (2 (c+d x))+8 a b^3 \sin (3 (c+d x))-3 b^4 \sin (4 (c+d x))}{96 b^5 d} \]

input
Integrate[(Cos[c + d*x]^3*(1 - Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]
 
output
(-96*a^4*c + 48*a^2*b^2*c + 12*b^4*c - 96*a^4*d*x + 48*a^2*b^2*d*x + 12*b^ 
4*d*x + 192*a^3*Sqrt[-a^2 + b^2]*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[- 
a^2 + b^2]] + 24*a*b*(4*a^2 - b^2)*Sin[c + d*x] - 24*a^2*b^2*Sin[2*(c + d* 
x)] + 8*a*b^3*Sin[3*(c + d*x)] - 3*b^4*Sin[4*(c + d*x)])/(96*b^5*d)
 
3.6.93.3 Rubi [A] (verified)

Time = 1.31 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.18, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 3529, 25, 3042, 3528, 25, 3042, 3528, 25, 3042, 3502, 27, 3042, 3214, 3042, 3138, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (1-\sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3529

\(\displaystyle \frac {\int -\frac {\cos ^2(c+d x) \left (-4 a \cos ^2(c+d x)-b \cos (c+d x)+3 a\right )}{a+b \cos (c+d x)}dx}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos ^2(c+d x) \left (-4 a \cos ^2(c+d x)-b \cos (c+d x)+3 a\right )}{a+b \cos (c+d x)}dx}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (-4 a \sin \left (c+d x+\frac {\pi }{2}\right )^2-b \sin \left (c+d x+\frac {\pi }{2}\right )+3 a\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {\frac {\int -\frac {\cos (c+d x) \left (8 a^2-b \cos (c+d x) a-3 \left (4 a^2-b^2\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)}dx}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\int \frac {\cos (c+d x) \left (8 a^2-b \cos (c+d x) a-3 \left (4 a^2-b^2\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)}dx}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (8 a^2-b \sin \left (c+d x+\frac {\pi }{2}\right ) a-3 \left (4 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {-\frac {\frac {\int -\frac {-8 a \left (3 a^2-b^2\right ) \cos ^2(c+d x)-b \left (4 a^2+3 b^2\right ) \cos (c+d x)+3 a \left (4 a^2-b^2\right )}{a+b \cos (c+d x)}dx}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {-\frac {\int \frac {-8 a \left (3 a^2-b^2\right ) \cos ^2(c+d x)-b \left (4 a^2+3 b^2\right ) \cos (c+d x)+3 a \left (4 a^2-b^2\right )}{a+b \cos (c+d x)}dx}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {-\frac {\int \frac {-8 a \left (3 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-b \left (4 a^2+3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+3 a \left (4 a^2-b^2\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3502

\(\displaystyle -\frac {-\frac {-\frac {\frac {\int \frac {3 \left (a b \left (4 a^2-b^2\right )+\left (8 a^4-4 b^2 a^2-b^4\right ) \cos (c+d x)\right )}{a+b \cos (c+d x)}dx}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {-\frac {\frac {3 \int \frac {a b \left (4 a^2-b^2\right )+\left (8 a^4-4 b^2 a^2-b^4\right ) \cos (c+d x)}{a+b \cos (c+d x)}dx}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {-\frac {\frac {3 \int \frac {a b \left (4 a^2-b^2\right )+\left (8 a^4-4 b^2 a^2-b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3214

\(\displaystyle -\frac {-\frac {-\frac {\frac {3 \left (\frac {x \left (8 a^4-4 a^2 b^2-b^4\right )}{b}-\frac {8 a^3 \left (a^2-b^2\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{b}\right )}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {-\frac {\frac {3 \left (\frac {x \left (8 a^4-4 a^2 b^2-b^4\right )}{b}-\frac {8 a^3 \left (a^2-b^2\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}\right )}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 3138

\(\displaystyle -\frac {-\frac {-\frac {\frac {3 \left (\frac {x \left (8 a^4-4 a^2 b^2-b^4\right )}{b}-\frac {16 a^3 \left (a^2-b^2\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{b d}\right )}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {-\frac {-\frac {3 \left (4 a^2-b^2\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {3 \left (\frac {x \left (8 a^4-4 a^2 b^2-b^4\right )}{b}-\frac {16 a^3 \left (a^2-b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}\right )}{b}-\frac {8 a \left (3 a^2-b^2\right ) \sin (c+d x)}{b d}}{2 b}}{3 b}-\frac {4 a \sin (c+d x) \cos ^2(c+d x)}{3 b d}}{4 b}-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 b d}\)

input
Int[(Cos[c + d*x]^3*(1 - Cos[c + d*x]^2))/(a + b*Cos[c + d*x]),x]
 
output
-1/4*(Cos[c + d*x]^3*Sin[c + d*x])/(b*d) - ((-4*a*Cos[c + d*x]^2*Sin[c + d 
*x])/(3*b*d) - ((-3*(4*a^2 - b^2)*Cos[c + d*x]*Sin[c + d*x])/(2*b*d) - ((3 
*(((8*a^4 - 4*a^2*b^2 - b^4)*x)/b - (16*a^3*(a^2 - b^2)*ArcTan[(Sqrt[a - b 
]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b*Sqrt[a + b]*d)))/b - (8*a 
*(3*a^2 - b^2)*Sin[c + d*x])/(b*d))/(2*b))/(3*b))/(4*b)
 

3.6.93.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 

rule 3529
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] : 
> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 
1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + n + 2))   Int[(a + b*Sin[e + f*x 
])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*( 
n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + C* 
(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 
0])))
 
3.6.93.4 Maple [A] (verified)

Time = 1.88 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.31

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {\left (-a^{3} b -\frac {1}{2} a^{2} b^{2}-\frac {1}{8} b^{4}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 a^{3} b -\frac {1}{2} a^{2} b^{2}+\frac {4}{3} a \,b^{3}+\frac {7}{8} b^{4}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 a^{3} b +\frac {1}{2} a^{2} b^{2}-\frac {7}{8} b^{4}+\frac {4}{3} a \,b^{3}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a^{3} b +\frac {1}{2} a^{2} b^{2}+\frac {1}{8} b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {\left (8 a^{4}-4 a^{2} b^{2}-b^{4}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}\right )}{b^{5}}+\frac {2 a^{3} \left (a -b \right ) \left (a +b \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{5} \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(252\)
default \(\frac {-\frac {2 \left (\frac {\left (-a^{3} b -\frac {1}{2} a^{2} b^{2}-\frac {1}{8} b^{4}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 a^{3} b -\frac {1}{2} a^{2} b^{2}+\frac {4}{3} a \,b^{3}+\frac {7}{8} b^{4}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 a^{3} b +\frac {1}{2} a^{2} b^{2}-\frac {7}{8} b^{4}+\frac {4}{3} a \,b^{3}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a^{3} b +\frac {1}{2} a^{2} b^{2}+\frac {1}{8} b^{4}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {\left (8 a^{4}-4 a^{2} b^{2}-b^{4}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}\right )}{b^{5}}+\frac {2 a^{3} \left (a -b \right ) \left (a +b \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{5} \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(252\)
risch \(-\frac {x \,a^{4}}{b^{5}}+\frac {x \,a^{2}}{2 b^{3}}+\frac {x}{8 b}-\frac {i a^{3} {\mathrm e}^{i \left (d x +c \right )}}{2 b^{4} d}+\frac {i a \,{\mathrm e}^{i \left (d x +c \right )}}{8 b^{2} d}+\frac {i a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{2 b^{4} d}-\frac {i a \,{\mathrm e}^{-i \left (d x +c \right )}}{8 b^{2} d}+\frac {\sqrt {-a^{2}+b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \sqrt {-a^{2}+b^{2}}-a}{b}\right )}{d \,b^{5}}-\frac {\sqrt {-a^{2}+b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}+a}{b}\right )}{d \,b^{5}}-\frac {\sin \left (4 d x +4 c \right )}{32 d b}+\frac {a \sin \left (3 d x +3 c \right )}{12 b^{2} d}-\frac {a^{2} \sin \left (2 d x +2 c \right )}{4 b^{3} d}\) \(269\)

input
int(cos(d*x+c)^3*(-cos(d*x+c)^2+1)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOS 
E)
 
output
1/d*(-2/b^5*(((-a^3*b-1/2*a^2*b^2-1/8*b^4)*tan(1/2*d*x+1/2*c)^7+(-3*a^3*b- 
1/2*a^2*b^2+4/3*a*b^3+7/8*b^4)*tan(1/2*d*x+1/2*c)^5+(-3*a^3*b+1/2*a^2*b^2- 
7/8*b^4+4/3*a*b^3)*tan(1/2*d*x+1/2*c)^3+(-a^3*b+1/2*a^2*b^2+1/8*b^4)*tan(1 
/2*d*x+1/2*c))/(1+tan(1/2*d*x+1/2*c)^2)^4+1/8*(8*a^4-4*a^2*b^2-b^4)*arctan 
(tan(1/2*d*x+1/2*c)))+2*a^3*(a-b)*(a+b)/b^5/((a-b)*(a+b))^(1/2)*arctan((a- 
b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))
 
3.6.93.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.91 \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\left [\frac {12 \, \sqrt {-a^{2} + b^{2}} a^{3} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 3 \, {\left (8 \, a^{4} - 4 \, a^{2} b^{2} - b^{4}\right )} d x - {\left (6 \, b^{4} \cos \left (d x + c\right )^{3} - 8 \, a b^{3} \cos \left (d x + c\right )^{2} - 24 \, a^{3} b + 8 \, a b^{3} + 3 \, {\left (4 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, b^{5} d}, \frac {24 \, \sqrt {a^{2} - b^{2}} a^{3} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - 3 \, {\left (8 \, a^{4} - 4 \, a^{2} b^{2} - b^{4}\right )} d x - {\left (6 \, b^{4} \cos \left (d x + c\right )^{3} - 8 \, a b^{3} \cos \left (d x + c\right )^{2} - 24 \, a^{3} b + 8 \, a b^{3} + 3 \, {\left (4 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, b^{5} d}\right ] \]

input
integrate(cos(d*x+c)^3*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="fri 
cas")
 
output
[1/24*(12*sqrt(-a^2 + b^2)*a^3*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos 
(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 
 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 3*(8*a^4 - 4*a^ 
2*b^2 - b^4)*d*x - (6*b^4*cos(d*x + c)^3 - 8*a*b^3*cos(d*x + c)^2 - 24*a^3 
*b + 8*a*b^3 + 3*(4*a^2*b^2 - b^4)*cos(d*x + c))*sin(d*x + c))/(b^5*d), 1/ 
24*(24*sqrt(a^2 - b^2)*a^3*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*s 
in(d*x + c))) - 3*(8*a^4 - 4*a^2*b^2 - b^4)*d*x - (6*b^4*cos(d*x + c)^3 - 
8*a*b^3*cos(d*x + c)^2 - 24*a^3*b + 8*a*b^3 + 3*(4*a^2*b^2 - b^4)*cos(d*x 
+ c))*sin(d*x + c))/(b^5*d)]
 
3.6.93.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3*(1-cos(d*x+c)**2)/(a+b*cos(d*x+c)),x)
 
output
Timed out
 
3.6.93.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate(cos(d*x+c)^3*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="max 
ima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.6.93.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (174) = 348\).

Time = 0.33 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.92 \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=-\frac {\frac {3 \, {\left (8 \, a^{4} - 4 \, a^{2} b^{2} - b^{4}\right )} {\left (d x + c\right )}}{b^{5}} + \frac {48 \, {\left (a^{5} - a^{3} b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} b^{5}} - \frac {2 \, {\left (24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 3 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 32 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 21 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 32 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 21 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4} b^{4}}}{24 \, d} \]

input
integrate(cos(d*x+c)^3*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c)),x, algorithm="gia 
c")
 
output
-1/24*(3*(8*a^4 - 4*a^2*b^2 - b^4)*(d*x + c)/b^5 + 48*(a^5 - a^3*b^2)*(pi* 
floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1 
/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^5) - 
2*(24*a^3*tan(1/2*d*x + 1/2*c)^7 + 12*a^2*b*tan(1/2*d*x + 1/2*c)^7 + 3*b^3 
*tan(1/2*d*x + 1/2*c)^7 + 72*a^3*tan(1/2*d*x + 1/2*c)^5 + 12*a^2*b*tan(1/2 
*d*x + 1/2*c)^5 - 32*a*b^2*tan(1/2*d*x + 1/2*c)^5 - 21*b^3*tan(1/2*d*x + 1 
/2*c)^5 + 72*a^3*tan(1/2*d*x + 1/2*c)^3 - 12*a^2*b*tan(1/2*d*x + 1/2*c)^3 
- 32*a*b^2*tan(1/2*d*x + 1/2*c)^3 + 21*b^3*tan(1/2*d*x + 1/2*c)^3 + 24*a^3 
*tan(1/2*d*x + 1/2*c) - 12*a^2*b*tan(1/2*d*x + 1/2*c) - 3*b^3*tan(1/2*d*x 
+ 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^4*b^4))/d
 
3.6.93.9 Mupad [B] (verification not implemented)

Time = 2.76 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.24 \[ \int \frac {\cos ^3(c+d x) \left (1-\cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\frac {a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )-\frac {a^2\,\sin \left (2\,c+2\,d\,x\right )}{4}}{b^3\,d}-\frac {\frac {a\,\sin \left (c+d\,x\right )}{4}-\frac {a\,\sin \left (3\,c+3\,d\,x\right )}{12}}{b^2\,d}+\frac {\frac {\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{4}-\frac {\sin \left (4\,c+4\,d\,x\right )}{32}}{b\,d}+\frac {a^3\,\sin \left (c+d\,x\right )}{b^4\,d}-\frac {2\,a^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^5\,d}-\frac {2\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{a\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+b\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {b^2-a^2}}{b^5\,d} \]

input
int(-(cos(c + d*x)^3*(cos(c + d*x)^2 - 1))/(a + b*cos(c + d*x)),x)
 
output
(a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) - (a^2*sin(2*c + 2*d*x))/ 
4)/(b^3*d) - ((a*sin(c + d*x))/4 - (a*sin(3*c + 3*d*x))/12)/(b^2*d) + (ata 
n(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))/4 - sin(4*c + 4*d*x)/32)/(b*d) + 
(a^3*sin(c + d*x))/(b^4*d) - (2*a^4*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x 
)/2)))/(b^5*d) - (2*a^3*atanh((sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(a*co 
s(c/2 + (d*x)/2) + b*cos(c/2 + (d*x)/2)))*(b^2 - a^2)^(1/2))/(b^5*d)